A comparison of reversible jump MCMC algorithms for DNA sequence segmentation using hidden Markov models
نویسندگان
چکیده
This paper describes a Bayesian approach to determining the number of hidden states in a hidden Markov model (HMM) via reversible jump Markov chain Monte Carlo (MCMC) methods. Acceptance rates for these algorithms can be quite low, resulting in slow exploration of the posterior distribution. We consider a variety of reversible jump strategies which allow inferences to be made in discretely observed HMMs, with particular emphasis placed on the comparison of the competing strategies in terms of computational expense, algebraic complexity and performance. The methods are illustrated with an application to the segmentation of DNA sequences into compositionally homogeneous regions.
منابع مشابه
Reversible Jump Markov Chain Monte Carlo Methods and Segmentation Algorithms in Hidden Markov Models
We consider hidden Markov models with an unknown number of regimes for the segmentation of the pixel intensities of digital images that consist of a small set of colours. New reversible jump Markov chain Monte Carlo algorithms to estimate both the dimension and the unknown parameters of the model are introduced. Parameters are updated by random walk Metropolis–Hastings moves, without updating t...
متن کاملMCMC for hidden continuous - time
Hidden Markov models have proved to be a very exible class of models, with many and diverse applications. Recently Markov chain Monte Carlo (MCMC) techniques have provided powerful computational tools to make inferences about the parameters of hidden Markov models, and about the unobserved Markov chain, when the chain is deened in discrete time. We present a general algorithm, based on reversib...
متن کاملStatistical Applications in Genetics and Molecular Biology
We propose a heuristic approach to the detection of evidence for recombination and gene conversion in multiple DNA sequence alignments. The proposed method consists of two stages. In the first stage, a sliding window is moved along the DNA sequence alignment, and phylogenetic trees are sampled from the conditional posterior distribution with MCMC. To reduce the noise intrinsic to inference from...
متن کاملA Bayesian approach to DNA sequence segmentation.
Many deoxyribonucleic acid (DNA) sequences display compositional heterogeneity in the form of segments of similar structure. This article describes a Bayesian method that identifies such segments by using a Markov chain governed by a hidden Markov model. Markov chain Monte Carlo (MCMC) techniques are employed to compute all posterior quantities of interest and, in particular, allow inferences t...
متن کاملMonte Carlo Methods and Bayesian Computation: MCMC
Markov chain Monte Carlo (MCMC) methods use computer simulation of Markov chains in the parameter space. The Markov chains are defined in such a way that the posterior distribution in the given statistical inference problem is the asymptotic distribution. This allows to use ergodic averages to approximate the desired posterior expectations. Several standard approaches to define such Markov chai...
متن کامل